Non-parametric machine learning methods for interpolation of spatially varying non-stationary and non-Gaussian geotechnical properties
نویسندگان
چکیده
منابع مشابه
Non-parametric Machine Learning Methods for Clustering and Variable Selection
Qian Liu: Non-parametric machine learning methods for clustering and variable selection (Under the direction of Eric Bair) Non-parametric machine learning methods have been popular and widely used in many scientific research areas, especially when dealing with high-dimension low sample size (HDLSS) data. In particular, clustering and biclustering approaches can serve as exploratory analysis too...
متن کاملcommuting and non -commuting graphs of finit groups
فرض کنیمg یک گروه غیر آبلی متناهی باشد . گراف جابجایی g که با نماد نمایش داده می شود ،گرافی است ساده با مجموعه رئوس که در آن دو راس با یک یال به هم وصل می شوند اگر و تنها اگر . مکمل گراف جابجایی g راگراف نا جابجایی g می نامیم.و با نماد نشان می دهیم. گرافهای جابجایی و ناجابجایی یک گروه متناهی ،اولین بار توسطاردوش1 مطرح گردید ،ولی در سالهای اخیر به طور مفصل در مورد بحث و بررسی قرار گرفتند . در ،م...
15 صفحه اولProjected non-stationary simultaneous iterative methods
In this paper, we study Projected non-stationary Simultaneous It-erative Reconstruction Techniques (P-SIRT). Based on algorithmic op-erators, convergence result are adjusted with Opial’s Theorem. The advantages of P-SIRT are demonstrated on examples taken from to-mographic imaging.
متن کاملA model for non-parametric spatially varying regression effects
A method for non-parametric regression effects is applied to spatially configured data, using a generalised additive form that allows regression effects to vary over areas. The focus is on discrete outcomes in disease mapping but can be adapted to metric outcomes. Specifically a mixed model is proposed that combines a local general additive model (GAM) element for each area with a spatially fil...
متن کاملSpatial Interpolation Using Copula for non-Gaussian Modeling of Rainfall Data
‎One of the most useful tools for handling multivariate distributions of dependent variables in terms of their marginal distribution is a copula function‎. ‎The copula families capture a fair amount of attention due to their applicability and flexibility in describing the non-Gaussian spatial dependent data‎. ‎The particular properties of the spatial copula are rarely ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Geoscience Frontiers
سال: 2021
ISSN: 1674-9871
DOI: 10.1016/j.gsf.2020.01.011